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Starting from an intrinsic Langevin equation, we give a geometrical derivation 
of the Fokker-Planck equation. We also present a method for obtaining a 
stationary distribution and for deriving potential conditions when the diffusion 
matrix is singular. 
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1. I N T R O D U C T I O N  

For  many  years efforts have been devoted to finding a covariant  for- 
mulat ion of the F o k k e r - P l a n c k  equat ion ( F P E )  and to applying it to 
physical systems. (1 ~2) Clearly, the principle of covariance affirms that all 
physical laws can be written by means of equations that maintain their 
form with respect to general t ransformations of  coordinates. 

Another  equivalent, a l though more  powerful formulat ion than the 
covariant  one is the intrinsic formulation. An equat ion is intrinsic when it 
is completely independent  of the coordinate  systems, so any property that 
may  be deduced from an intrinsic equat ion represents the physical reality 
in any coordinate  system. Recently, an intrinsic formulat ion of the 
F o k k e r - P l a n c k  equat ion has been obtained. (~3/ 

Our  aim in this paper  is to perform a geometrical (i.e., intrinsic) 
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derivation of the Fokker-Ptanck equation from the Langevin equation. In 
this way we arrive at a FPE  written in a different intrinsic notation than 
that used in Ref. 13: it has the additional advantage that one need not 
select a metric tensor of phase space. 3 This intrinsic Fokker-Planck 
equation also gives a systematic method of finding the stationary dis- 
tribution when detailed balance is present but the diffusion matrix is 
singular. (14) 

In Section 2 we give the geometrical derivation of the FPE starting 
from the Langevin equation and using functional techniques. (~5'16~ In Sec- 
tion 3 we find the stationary distribution generalizing the potential con- 
ditions for those cases in which the diffusion matrix is singular and we 
apply the method to practical examples of physical interest. 

2. G E O M E T R I C A L  D E R I V A T I O N  OF T H E  F O K K E R - P L A N C K  
E Q U A T I O N  

We begin with the Langevin equation: 

0" = f~(q)  + gf~(q) ' ~k(t) (2.1) 

(with implied summation over repeated indices). This equation gives the 
temporal evolution of the trajectories q~(t), # = 1,..., n, of the ensemble of 
gross variables. The functions ~g(t), k = 1 ..... m, are fluctuating functions in 
time and their statistical properties are known. For  certain initial con- 
ditions, q ~ -  q~(0). The solution of (2.1), q(t, ~), is a well-defined stochastic 
processes, and for each realization of ~(t) the solution of (2.1) yields a well- 
defined trajectory in phase space./~~ The Langevin equation is a 
covariant equation, since under a general change of coordinates the 
magnitudes 0 ~, f~,  g~ transform into contravariant vectors. (34/ Now our 
first step is to write Eq. (2.1) in an intrinsic form. 

Let M be the phase space of the system that has the structure of a dif- 
ferentiable manifold of n dimensions, and let T(M)  be the space of the vec- 
tor fields tangent to the manifold M .  (191 From the Langevin equation (2.1) 
we define the following fields of vectors tangent to M: 

F -  f ' ( q ) .O /Oq  ~, FE T (M)  

Gg --- g~(q) �9 3/Oq ~, G~ ~ T (M)  

Xo - ( f  " O/Oq ~, Xo e T( M)  

(2.2a) 

(2.2b) 

(2.2c) 

3 The selection of metric tensor is not unique. Usually the diffusion matrix is chosen as the 
metric tensor of the phase space.  11'2'4'5'7 9,13) This choice restricts the formalism to non- 
singular diffusion matrices. This does not happen here, where that selection is not necessary. 
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These vector fields do not depend on the system of gross variables (they are 
intrinsic). Introducing Eqs. (2.2) into Eq. (2.1), we have 

Xo=F+Gk~k(t),  k = l  ..... m (2.3) 

Defining the tangent field X c  T(R x M) by 

X -  C/Ct + (1 ~ C/Cq" (2.4) 

we find that the Langevin equation (2.3) becomes 

X=O/Ct+F+Gk~k(t),  k = l  ..... m (2.5) 

which is completely independent of the chosen system of gross variables. 
As is well known, if the noise functions ~ ( t )  are Gaussian and delta- 

correlated (white noise), the Langevin equation is stochastically equivalent 
to the Fokke~Planck  equation for the probability density. 4 Therefore, our 
next step will be to carry out a geometrical derivation of the FPE starting 
from the intrinsic Langevin equation with white noise and using functional 
methods. 

Let5 ~b~(t; to, qo; [~])  be the solution of Eq. (2.5) with the deter- 
ministic initial conditions 

~be(to; to, qo; [ ~ ] ) = q ~  (2.6) 

The integral curves of the Langevin equation generate a transformation 
R x M that we can write in the form 

~ :  R x M ~ R x M  
(2.7) 

(to, qo) --+ 0~(to; qo; [4 ] )  

where tP~(to, qo; [~])  is the point 

0~(to; qo; [ # ] ) -  ( z+  to, Op(z; to, qo; [~]))  

in the extended phase space R x M. 
If A ( R x M )  is the space of the forms defined in R xM,  (19) the 

reciprocal image ~b* associated with (2.6) is the mapping that turns forms 
defined in the point O~(to, qo) into forms defined in the point (to, qo), (19/ 

I p *  r 

A(R x m ) ( t 0 , q 0 )  ~ ) A(R x m)o~(to,qo) 

4 In what follows we will assume the Stratonovich interpretation rule (3,29) for the stochastic 
integrals. 

5 By [4] we mean the functional dependences on the noise ~k(t). 
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Let 

p(q, t) -~ 6~(q --~(t;  to, qo; [~]))  (2.8) 

be the density of points belonging to the trajectories of the Langevin 
equation. We define the n-form number of  points 

N = p ( q , t )  dq lA  ... A d q n e A ~ ( R •  (2.9) 

(the symbol /x denotes the exterior productr The (n+  1)-form 

~2 - N A dt (2.10) 

represents the number of points located between q and q + dq during the 
time interval (t, t+  dt). After a certain time interval r, these points will 
evolve, following (2.6), toward #/~(t,q). Then the form ~(,,qt becomes 
0*~[~(,,q)]. Assuming the conservation of the number of points, we have 

0%[~,,ql] = ~ , ~ , , ~  

that is, 
* Q 

lim #j ~[ (t ,q)]-~0~(t,q/=0 
z ~ 0  "5 

The left-hand side of this equation is the Lie derivative of the form ~2 in the 
direction of the vector field X, ~19) so we have the conservation equation 

Lxg2=O (2.11) 

which, taking account the linearity of the Lie derivative, can be written in 
the form [see Eq. (2.5)]: 

La/at ~'~ + Lrff2 + L~kakQ = 0 (2.12) 

However (see Appendix A), 

Lckakf2 = Lck(~ks (2.13) 

Introducing (2.13) into (2.12) and averaging over all noises ~k(t), we get 

La/~( s ) + LF( F2 ) + Lok{ ~kY2 ) = 0 (2.14) 

where 

<t '2 ) -  <6(q-dp(t; to, qo; [ ~ ] ) ) )  dq I /x "" /x dq ~ /x dt 

is the (n + 1 )-form of probability. 

(2.15) 
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For Gaussian white noise we show in Appendix A that 

1 3i k (2.16) 

where 3 ;~ is the Kronecker symbol. Substitution of Eq. (2.16) in Eq. (2.14) 
yields 

1 
La/~,(t2 ) + LF( n ) -- ~ 3 *j LGk LGj((2 ) = 0 ~(2.17) 

Finally, defining the n-form of probability 

f f I= ( X ) =  (p(q ,  t ) ) d q l  A "'" A d q n = p ( q , t )  dql A "'" A dq n ( 2 . 1 8 )  

we can write Eq. (2.17) as (see Appendix A) 

--LFII +~ 3 jk LcjLGklI (2.19) fI= 

which is the intrinsic Fokker-Planck equation (in the sense of 
Stratonovich). ~3/ Note that to arrive to this equation it has not been 
necessary to define any metric tensor in the manifold M. 6 

By means of the relation 

Lx = dix + ixd (2.20) 

where d is the exterior derivative and i x is the interior product associated 
to the field X, (19'21) and by taking into account that 

dH=O (2.21) 

(since H is an n-form or an n-manifold M(2~ we can write Eq. (2.19) as a 
continuity equation: 

[ I +  d F =  0 (2.22) 

where the ( n -  1)-form given by 

i F H - -  2 6 jk iGj(LGkH) (2.23) F= 

EF~ A"-  I(M)] is the probability current. 

6 This agrees with the fact that the FPE does not  depend on any metric structure of the phase 
space, since the FPE may be viewed as a continuity equation which involves only the 
definition of the volume element of the phase space. 
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3. STATIONARY DISTRIBUTION 

For the stationary case we have 

/~/st ~- 0 (3 .1 )  

which, when introduced in Eq. (2.22), implies 

dFs~ = 0 (3.2) 

A particular solution is that corresponding to vanishing probability current 
(the potential case) (14,22): 

1 k "  
/ " s t  = iFHst --~ (~a l@LakIIst = 0 (3.3) 

As is well known, if the drift and the diffusion matrix (which has to be 
nonsingular) satisfy certain relations called potential conditions, then the 
probability current vanishes for all points in the phase space and the 
stationary distribution may be written in a closed form. O4'22) We will study 
that case by using the formalism presented here. First, we must find the 
conditions under which Eq. (3.3) has nontrivial solutions. 

Since LGkHst is an n-form, it can be expressed as 

LakHst = 2k(q) Hst, k = 1,..., m (3.4) 

where 2k(q) are k functions on the phase space. Introducing (3.4) into 
Eq. (3.3), we arrive, after some manipulations, at 

inHst = 0  (3.5) 

where the field H is given by 

1 m 
H=F-~j~':  2j(q) Gj (3.6) 

Equation (3.5) implies 

H - = F  - 1 2  ~ 2s(q) G i = 0  (3.7) 
J ~ l  

Therefore, the following are the conditions for Eq. (3.3) to have a solution: 

(i) The vector field F must depend linearly on G 1 ..... Gin; i.e., there 
must be m functions 21(q) ..... 2re(q) such that: 

F =  1 ~ 2j(q) Gj (3.8) 
2 j = l  
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(ii) The solution H=t of Eq. (3.3) must then satisfy the m (partial dif- 
ferential) equations 

Lak//st = )vk(q)/-/st, k = 1 ..... m (3.9) 

where the 2(q) are precisely the coefficients on the right-hand side of 
Eq. (3.8). In every system of gross variables Eq. (3.9) reads [cf. (2.18) and 
Appendix A] 

g~(q)OPst(q)+[Og~{q)c~q '-----7-- k ~q~ 2k(q)] Pst(q)=0'  k = l , . . . , m  (3.10) 

Equation (3.9) or (3.10) is a first-order partial differential system, the 
integrability conditions of which turn out to be a straight consequence of 
the Frobenius theorem. Thus the system (3.9) [-or (3.10)] is integrable if it 
is complete, i.e., if the set of vector fields 7 {G~, 0~ = 1,..., m} is closed under 
the Lie bracket (19'23) 

[G=,G~]=C~/~(q)GT, ~z, 1~, 7 = 1 ..... m (3.11) 

where [G=, G ~ ] - G = G ~ - G p G ~  is the Lie bracket and C~,(q) are real 
functions. If the set {G~, ~ = 1,..., m} is not closed under the Lie bracket, 
we have to extend the set by those Lie brackets [Gi, Gj], i, j = 1,..., m, that 
do not depend linearly on G1 ..... Gm. This extension is shown in Appen- 
dix B. 

In what follows we assume that the sys t em 

Lc:,H=t = 2:,H=t, c~ = 1,..., m (3.12) 

is complete (or that it has been completed). The integrability conditions of 
(3.12) are those derived by applying the identity (23t 

[La~, Lat~] = Ll6o,a~d (3.13) 

to the system itself. Using Eq. (3.11), we obtain the integrability conditions 
for (3.12) as 

LG]~c. H=t = (G~2~ - G~2~) H=t (3.14) 

which in every system of gross variables is 

g~'(q) ~C~/3(q) § C~/~(q) 2~(q) - g~(q) c~2/~(q) 
~q~ 0q" 

- - = 0 ,  ~ , f l = l  ..... m (3.15) + g~(q) 0q, 

where the C~,(q) are given by Eq. (3.11). 

7 We assume that the noise vector fields G= are linearly independent. 

822/46/I-2-16 
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Therefore, if the vector fields F and G~ satisfy the conditions given by 
Eqs. (3.8) and (3.14) [or (3.15)], then we have zero probability current 
and the stationary distribution is the solution of Eq. (3.9) [-or (3.10)]. 

In the special case m = n (equal number of independent noise functions 
and gross variables, which implies a nonsingular diffusion matrix), the con- 
dition (3.8) is automatically fulfilled and the system (3.9) is itself complete. 
In this case the so-called potential conditions can be derived, after some 
manipulations, from Eq. (3.15). Thus, we may view Eq. (3.15) as a 
generalization of the potential conditions when the diffusion matrix is 
singular. For m = 1 (a unique noise function), Eqs. (3.8) and (3.9) become, 
respectively, 

1 
F = ~ 2 ( q )  G (3.16) 

and 

LGHst=,~(q) Hst (3.17) 

the latter being a first-order partial differential equation, which is always 
integrable. 

As an example, we will apply the formalism hitherto studied to two- 
dimensional Langevin equations, which are relevant in the study of non- 
linear optics. 

A simple model to study optical bistability ~24~ consists of an ensemble 
of homogeneous two-level atoms interacting with an electromagnetic field. 
This system is described by coupled Maxwell-Bloch equations in the 
rotating-wave approximation. These equations involve the internal electric 
field amplitude, the polarization of the medium, and the inversion 
density. (25) Neglecting the spatial variation of the field amplitudes and 
assuming that the atomic response to the electromagnetic field is very fast, 
one can make the adiabatic approximation,/25) which leads to a single first- 
order equation for the electromagnetic field. When the frequencies of the 
empty resonator, the two-level system, and the driving field are very similar 
and the exterior pumping term is negligible, the equation for the elec- 
tromagnetic field is (26'27) 

/~+ = _ E +  (1 + F  2 1 ) E+ 
l+-iEi2. + F + ( t ) q  I+tEI2F(t) (3.18) 

where E + is the complex field amplitude and 1-2 is a real parameter. F+(t) 
and F(t) are fluctuating forces that in first approximation are assumed to 
be white Gaussian noise; the fluctuations of the polarization and of the 
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field are included in F+(t). The F(t) takes account of the inversion fluc- 
tuations. 

Following Schenzle and Brand, (261 if we neglect the fluctuation of the 
polarization and of the field, we obtain a two-dimensional Langevin 
equation with pure multiplicative fluctuations: 

/)+ = _ E +  (1 + F  2 1 ) E+ 
1 + IEI 2 + 1 + Igl ---------~F(t) (3.19)  

In fact, Schenzle and Brand go one step further, assuming that the field 
intensity IEI 2 is small and expanding the saturation term up to first order 
in the field intensity. After neglecting higher order terms in the fluctuations, 
the final result is 

.g'+ = - (1  + F 2) E + + F 2 I EI 2 E + + E+F(t )  (3.20) 

This latter equation is a model for the laser transition with pure mul- 
tiplicative inversion fluctuations. If we assume that the inversion fluc- 
tuations F(t) are real, we can write Eqs. (3.19) and (3.20) in a slightly more 
general form: 

b . )  z 
, t = -  am l+ iz l~  z+~(t) (3.21) 

and 

~= ( ~ - p  IzJ 2~) z+z~(t) (3.22) 

where z represents the complex field amplitude, a, b, ~,/?, 7 >/0 are real 
parameters, and ~(t) is a real, Gaussian white noise. 8 

Putting z = x~ + ix2, we find that Eqs. (3.21) and (3.22) are equivalent 
to the equations 

b ) x~ 
2~,= a + l + x ~ + x ~  X ~ + l + x ~ + x 2  z~(t)' # = 1 , 2  (3.23) 

and 

2 ~ = c ~ x u - f i ( x ~ + x ~ ) T x ~ + x ~ ( t ) ,  /a= 1, 2 (3.24) 

In both cases there are fewer noise functions than gross variables. ~ This 
yields singular diffusion matrices and the normal procedure for finding 

* Equation (3.22) also represents a suitable model for subharmonic generation, parametric 
three-wave mixing, and Raman scattering, as well as autocatalytic reactions. (26) 
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stationary distributions, via potential conditions, does not work. However, 
in these cases we can apply the method developed here. 

If we start with Eq. (3.23), the drift and the noise vector fields are Ecf. 
Eq. (2.21)] 

F = -  Xx +X2 (3.25) 

Xx ~ + x2 (3.26) G- l  §247 

The first compatibility condition, Eq. (3.16), is obviously satisfied because 
the drift vector is proportional to the noise vector, their ratio being 

~(X1, X2)= -2[b +a(1 +x~+x~)] (3.27) 

In this particular gross variable system the stationary distribution can be 
written as 

Hst = Pst(Xl, x2) dxl /x dx2 (3.28) 

which, introduced into Eq. (3.17) along with Eqs. (3.25) and (3.26), gives 
[el. Eq. (3.10)] 

I 2 (l+x~+x~)2(x~,x2)lPst=O (3.29) 0est+ 0Ps,+ l+x +x  
xl 8x~ x2 8x2 

whose general solution is 

P~t(z)=N(argz) izl2(.+b+l)ex p -Izl  ~ 2a+b+~a lzl 2 (3.30) 

Doing an analogous calculation, we find the stationary distribution for 
the model represented by Eq. (3.22). The final result is 

Pst(z)= N(arg z) lzl~'- l exp ( - fl- (3.31) 

In these expressions N(arg z) is an arbitrary function of arg z to be deter- 
mined by suitable boundary conditions and by the normalization of the 
stationary distribution. 
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4. C O N C L U S I O N  

From an intrinsic viewpoint, the dynamic evolution of a stochastic 
system that satisfies a Langevin equation is determined by the integral cur- 
ves of an intrinsic field defined by 

X =  O/at + F +  ~k(t) Gk (4.1) 

where F and Gk are defined by Eqs. (2.2). Nevertheless, the final state is 
not determined, since the evolution does not take place following a simple 
trajectory, but rather by means of an ensemble of trajectories, each one 
corresponding to a concrete realization of the noise. We should point out 
that this formalism can also facilitate the systematic study of the invariants 
and symmetries of the stochastic process, sine a time-independent tensor T 
is invariant under the dynamic evolution of the system (i.e., invariant under 
a group of transformations generated by the field X (19~) if, and only if, the 
following m + 1 (partial differential) equations hold(~9): 

LFT = 0; LckT = 0, k = 1 ..... m (4.2) 

These equations allows us to know, in each concrete case, whether or not 
there exist invariants of the stochastic process and to determine them. 

In the case of Gaussian white noise the intrinsic Langevin 
equation (4.1) is stochastically equivalent to the intrinsic Fokker-Planck 
equation: 

1~= - -LFH+~J~LGjLGk H ~ (4.3) 

where H = P(q, t) dq ~ /x ... /x dq 'z is the n-form of probability. To arrive at 
this equation, we have not had to define any kind of metric tensor in the 
phase space. 

Finally, we have also found that if the vector fields F and G~ satisfy 
the conditions: 

1 
L 2j(q) Gj (4.4) (i) F = ~  

I - -  1 

(ii) The system 

L a H s t  = )~=(q) Hst (4.5) 

is complete (or it has been complete), then the solution Hst of Eq. (4.5) is 
the stationary distribution of the Fokker-Planck equation (4.3) such that 
the associated probability current vanishes everywhere. This method 



244 Masoliver, Garrido, and LIosa 

generalizes the potential conditions, because it can be used even though the 
diffusion matrix is singular. In this case, the method provides a systematic 
way of finding the stationary distribution when, as often happens, it is not 
trivial to find it by inspection of the Fokker Planck equation. 

APPENDIX  A 

A1. Derivat ion of  Eq. (2.13)  

If f is a function, XE T(M), and ~eA(M),  we have the following 
property of the Lie derivativer 

L~x~ = f L x ~  + d f  A ixc~ 

In our case 

Lckc, k = ~kLck(2 + d~ k A iCks (A.1) 

Taking into account (2.10) and the fact that the interior product i x is an 
antiderivation, (19) we have 

iGor2 = ick(N A dr) = (icoN) A dt + ( -  1) n N A (iGk dt) 

However, dCk= ~k dt; iGkdt=O (since Gk is independent of time); and 
dt A dt = 0; therefore 

d~ k A ick(2 = 0 (A.2) 

On the other hand ~91 

LGk(r = ~kLG~f2 + (Gk~ k) s = ~kLG~f2 (A.3) 

since Gk~ k = 0 because ~k = ~k(t). Substitution of (A.3) and (A.2) into (A.1) 
gives Eq. (2.13). 

A2. Derivat ion of Eq. (2.16)  

If the noises ~k(t) are Gaussian of zero mean, we may apply the 
Novikov theorem(28): 

fo ( ~ k ( t ) ~ ) =  dt' (~k ( t )~J ( t ' ) ) (6 f2 ( t ) / 6~J ( t ' ) )  (A.4) 

(the symbol "6" here denotes functional derivative). In the case of white 
noise 

(~k(t) U( t ' ) )  = ,~jk ,~(t-  c) (A.5) 
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Introducing (A.5) in (A.4) and applying the Stratonovich prescription over 
the integration of the Dirac function in the semi-interval, (29/we have 

1 
( ~k(t) g2 ) =2 (M2/f~k(t) ) (a.6) 

From Eqs. (3.8) (2.10) we deduce 

M2(t) 0 {~.(q_,)~Sfb"(t;qo, to;[~])}  
g)~:(t')- Oq" " c~:(t') dq 1 A "" A dq" A dt 

On the other hand, the formal solution of the Langevin equation (2.1) 
can be written in the form 

~b"(t; qo, to; [~ ] )=  q~ + dt [ f"(~(s))+~k(s)  g~<(d:(s))] 
to 

Taking the derivative of this equation gives (0 < t '<  t): 

6~ /( t, ) - g~:( dO( t') ) + j,, dt ~q~ [f"(dO(s)) + ~.k(s) gf:(d~(S)) ] cS~:(t') 

and therefore 

whence 

6 ~ j ( t )  - g f ( ~ ( t ) )  

~U(t) 
0 
aq ~ [gf(q) 3'~(q- ~)] dq I A "'" A dq n A d l  

and Eq. (A.6) becomes 

1 0 
(r Q)  = -~3 j/<l [gj::(q)(b"(q- r dq ~ A "'" A dq" A dt Oq" 

but (~9) 
0 

[ g f ( q ) @ " ( q - d 0 ) ) ]  d q  I A "'" A dq  n A dt=LGj((2 ) 

Therefore 

1 'k 

which is Eq. (2.16). 
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A3. D e r i v a t i o n  o f  Eq. ( 2 . 1 9 )  

Considering~ 19,21 ) 

Lx  = dix + ixd 

where d is the exterior derivative and ix is the inner product associated to 
the field X, we have 

La/~,(~)  = (dia/a, + i~/~t d)(H A dt)= ia/~(dH) A dt= I~l A dt 

Equation (2.17) becomes 

[17 + LFH +~ fJ~ LGkL~kH] A dt=O 

That is 
! 

P/+ L F H +  2 6J~LajLckH= 0 

since F and Gk are time-independent and H does not contain dt. 

A4. D e r i v a t i o n  o f  Eq. ( 3 .10 )  

From Eq. (2.18) we have 

La, II~t = Lc,[P~t(q ) dq' A . . .  A dq"] 

= [La, P~t(q)] dq' A ... A dq"+ P~t(q) 

] XJ ~ , l d q l A  "'" A(Lakdq~)A  "'" Adqn 

(here we do not sum over repeated indices). But (~9~ 

and 

8Pst(q) 
La~Pst(q) = Gk(Pst(q)) = ~ g~.(q) 

= 1 Oq ~ 

" ' "  L ~ " ' ~  @'A A( ~k@)A A@ '~ 

= d q l A  ,,. A "~ 1-~q ~ ~ ,] A "" A dq ~ 

ag~ d q ,  A .. A dq~ /, . . .  /, dq  n ~q~ 
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(since dq t~ A dql3= 0). Thus 

Lc;k H s t  = g 
~=~\  q /  

and Eq. (3.9) becomes 

( ~ 

which is Eq. (3.10). 

( <)l + P~t -~q~/J dql 
1 

" ag~) 
+ Pst ~1 ~q~} =)~kPst' 

A " ' "  A d q  n 

k =  l,..., m 

247 

A P P E N D I X  B. C O M P L E T I O N  OF THE S Y S T E M  (3.9)  

If the set of noise vector fields {Gi; i =  1,..., m} is not closed under the 
Lie bracket, we may proceed as follows: 

1. We first look for the minimal extension of the set of vector fields 
{G:; i=  1,..., m} such that the final set is closed under the Lie bracket. This 
extended set will be denoted by 

{G~; 0~=1 ..... r}, n>~r>>.m 

under the conditions that (a) (7;i=G :, i =  1 ..... m, and (b) there exist 
functions C~  such that 

[G~, Gel  = C~I~Gy; ~, fi, 7 = 1,..., r 

The latter extension can be obtained by supplementing the primary set 
{ G,, i = 1,..., m } by those Lie brackets [Gi, Gj], i, j = 1,..., m, that do not 
depend linearly on G~,..., Gin. 

If after this first extension the resulting set G1 ..... Gin, (~m+~ ..... (~'l was 
not closed under the Lie bracket, we would repeat the process as many 
times as necessary. (23) Note that since the phase space is finite-dimensional 
(n), this interaction process necessarily ends with r ~< n. 

2. The complete set corresponding to (3.9) has the final form 

LC~ Hst  = ,~:~(q ) U s t  ; 0~ = 1,..., r 

with G: = G: and 2~(q) = 2~(q) for i = 1 ..... m; and since the remaining vector 
fields c~ = in + 1,..., r have the form 

GOr I ~--- [Gi, G/] 
O~2=[G: , [Gj ,  G,]];  i , j , k = ) q , . . . , m ;  0~1, 0~2 = m + 1,..., r 
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and  so on,  the  c o r r e s p o n d i n g  

the re fore  be  t aken  such  tha t  

and  so on. 

func t ions  

Masoliver, Garrido, and klosa 

~ ( q )  (c~ = m + 1,..., r) m u s t  

~2  = G iG /2k  - G +G k,~./ - G /G  ~ 2i + G k Gj2~ 
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